District Heating Mode Analysis Based on an Air-cooled Combined Heat and Power Station
نویسندگان
چکیده
As an important research subject, district heating with combined heat and power (CHP) has significant potential for energy conservation. This paper utilised a 200 MW air-cooled unit as an actual case and presented a design scheme and energy consumption analysis of three typical CHP modes, including the low vacuum mode (LVM), the extraction condensing mode (ECM), and the absorbing heat pump mode (AHPM). The advantages and disadvantages of each mode (including their practical problems) were analysed, and suggestions for the best mode were proposed. The energy consumption of the three heating modes changed with the heating load. When the heating load was increased, the net power of the entire system decreased to different degrees. In this paper, the energy conservation effect of the LVM was the most ideal, followed by the ECM and the AHPM. Besides, the LVM and AHPM were able to supply larger heat loads than the ECM, which was limited by the minimum cooling flow of the low pressure cylinder. Furthermore, in order to get a more general conclusion, a similar case with an air-cooled 300 MW unit is studied, showing that the fuel consumption levels of ECM and AHPM have changed.
منابع مشابه
Theoretical analysis of a novel combined cooling, heating, and power (CCHP) cycle
This study presents a theoretical analysis of a new combined cooling, heating, and power cycle by the novel integration of an organic Rankine cycle (ORC), an ejector refrigeration cycle (ERC), and a heat pump cycle (HPC) for producing cooling output, heating output, and power output simultaneously. Three different working fluids—namely R113, isobutane, and R141b—have been used in power, ref...
متن کاملA Parametric Study on Exergy and Exergoeconomic Analysis of a Diesel Engine based Combined Heat and Power System
This paper presents exergy and exergoeconomic analysis and parametric study of a Diesel engine based Combined Heat and Power (CHP) system that produces 277 kW of electricity and 282 kW of heat. For this purpose, the CHP system is first thermodynamically analyzed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. The exergoeconomic analysis is based ...
متن کاملTechno-Economic Assessment of Different Inlet Air Cooling Systems in Warm Dry & Wet Climate Stations
Performance of a gas turbine mainly depends on the inlet air temperature. The power output of a gas turbine depends on the flow of mass through it. This is precisely the reason why on hot days, when air is less dense, power output falls. The objective here is to assess the advanced systems applied in reducing the gas turbine intake air temperature and examine the merits from integration of the ...
متن کاملModeling and Analysis of a Solid Oxide Fuel Cell Based Trigeneration System with an Oxygenated Fuel by Using an Exergoeconomic Methodology for Power, Heating and Cooling Production
In the present study, thermo-economic analysis of a combined solid oxide fuel cell (SOFC) with a gas turbine, a generator-absorber heat exchanger (GAX) and heating process heat exchanger for heating, cooling and power production as a tri-generation system is conducted. Also, an external steam reformer is applied to convert methanol as oxygenated fuel to hydrogen for the electrochemical process ...
متن کاملCompare three different algorithms (MOPSO, SPEA2, NSGA-II) for Multi Objective Optimization of a novel Combined Cooling, Heating, and Power (CCHP) system based on organic Rankine cycle
Recently Debates about Energy and the issue of global warming have led to the use of new energy. One of the best options for this purpose is the use of a new hybrid system of power, heating and refrigeration, with its thermal source of solar and geothermal energy. In the present study, used a combined cooling, heating and power system based on the organic Rankine cycle and the Ejector Refrigera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 16 شماره
صفحات -
تاریخ انتشار 2014